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LAMPIRAN 

 

Lampiran 1. Dokumentasi Percobaan Biodigester Limbah Serbuk Kayu 

 

    

 

  



69 
 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

 
 

Lampiran 2. Dokumentasi Percobaan Biodigester Limbah Kulit Nanas 
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Lampiran 3. Dokumentasi Percobaan Biodigester Limbah Kotoran Bebek 
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Lampiran 4. Surat Kesediaan Pembimbing Tugas Akhir I 
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Lampiran 5. Surat Kesediaan Pembimbing Tugas Akhir II 
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Lampiran 6. Form Bimbingan Tugas Akhir I 
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Lampiran 7. Form Bimbingan Tugas Akhir II 
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Lampiran 8. Kode Program 

 

//RTC-------------------------------- 

#include <RtcDS1302.h> 

 

ThreeWire myWire(4, 16, 2); // IO, SCLK, CE 

RtcDS1302<ThreeWire> Rtc(myWire); 

//rtc end------------------------------------------------ 

 

//dht------------------------------------------ 

#include <DHT22.h>  // Pastikan library DHT22 sudah terpasang 

#define pinDATA 26 

DHT22 dht22(pinDATA);  // Membuat objek untuk sensor DHT22 

//dht end-------------------------------------------------- 

 

//mq4----------------------- 

 

const int analogPin = 34; 

const float Vref = 330;  // Tegangan referensi ESP32 (3.3V) 

const int ADCResolution = 4095;  // Resolusi ADC ESP32 (12-bit) 

 

float calculatePPM(float voltage) { 

  return (voltage) * 1000;  // Eksperimen untuk hasil lebih akurat 

} 

//mq4 end-------------------------- 
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//wisner------------------------------------- 

const int wisnerPin = 33; // Pin analog tempat sensor terhubung 

int rawwisnerValue = 0;      // Variabel untuk menyimpan nilai analog 

int tekanan = 0;      // Variabel untuk menyimpan nilai yang dimapping 

//wisner end---------------------------------------- 

 

//lcd---------------------------------------- 

#include <Bonezegei_LCD1602_I2C.h> 

Bonezegei_LCD1602_I2C lcd(0x27); 

//lcd end------------------------------- 

 

//sd card----------------- 

#include "SD.h" 

#include "SPI.h" 

#include <Wire.h> 

 

#define SCK  18 

#define MISO  19 

#define MOSI  23 

#define CS  5 

 

SPIClass spi = SPIClass(VSPI); 

 

//sd card end---------------------------- 

 

unsigned long lastSaveTime = 0; // Waktu terakhir data disimpan 



78 
 

 
 

const unsigned long saveInterval = 600000; // Interval penyimpanan data (30 menit) 

 

void setup() { 

  Serial.begin(115200); 

  //rtc----------------------------------------- 

   Rtc.Begin(); 

 

    RtcDateTime compiled = RtcDateTime(_DATE, __TIME_); 

    printDateTime(compiled); 

    Serial.println(); 

 

    if (!Rtc.IsDateTimeValid()) 

    { 

        Serial.println("RTC lost confidence in the DateTime!"); 

        Rtc.SetDateTime(compiled); 

    } 

 

    if (Rtc.GetIsWriteProtected()) 

    { 

        Serial.println("RTC was write protected, enabling writing now"); 

        Rtc.SetIsWriteProtected(false); 

    } 

 

    if (!Rtc.GetIsRunning()) 

    { 

        Serial.println("RTC was not actively running, starting now"); 
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        Rtc.SetIsRunning(true); 

    } 

 

    RtcDateTime now = Rtc.GetDateTime(); 

    if (now < compiled) 

    { 

        Serial.println("RTC is older than compile time!  (Updating DateTime)"); 

        Rtc.SetDateTime(compiled); 

    } 

    else if (now > compiled) 

    { 

        Serial.println("RTC is newer than compile time. (this is expected)"); 

    } 

    else if (now == compiled) 

    { 

        Serial.println("RTC is the same as compile time! (not expected but all is fine)"); 

    } 

 

//rtc end--------------------------------------------- 

 

//lcd-------------------------------- 

  lcd.begin(); 

  lcd.setPosition(0, 0);      //param1 = X   param2 = Y 

  lcd.print("MONITORING"); 

  lcd.setPosition(0, 1); 

  lcd.print("BIODIGESTER            "); 
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  delay(2000); 

  lcd.clear(); 

  lcd.setPosition(0, 0);       

  lcd.print("IKHSAN             "); 

  lcd.setPosition(0, 1); 

  lcd.print("22010004          "); 

  delay(1000); 

  lcd.clear(); 

  lcd.setPosition(0, 0);       

  lcd.print("GILANG             "); 

  lcd.setPosition(0, 1); 

  lcd.print("22010005           "); 

  delay(1000); 

  lcd.clear(); 

  lcd.setPosition(0, 0);      

  lcd.print("SONA             "); 

  lcd.setPosition(0, 1); 

  lcd.print("24012001               "); 

  delay(1000); 

  lcd.clear(); 

  

  //lcd end-------------------------- 

 

  // SD Card Initialization 

 spi.begin(SCK, MISO, MOSI, CS); 
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  if (!SD.begin(CS,spi,80000000)) { 

    Serial.println("Card Mount Failed"); 

    lcd.setPosition(0, 0); 

    lcd.print("Card Mount"); 

    lcd.setPosition(0, 1); 

    lcd.print("Failed            "); 

    delay(2000); 

    lcd.clear(); 

  } 

  uint8_t cardType = SD.cardType(); 

 

  if(cardType == CARD_NONE){ 

    Serial.println("No SD card attached"); 

    lcd.setPosition(0, 0); 

    lcd.print("No SD card"); 

    lcd.setPosition(0, 1); 

    lcd.print("Attached         "); 

    delay(2000); 

    lcd.clear(); 

  } 

} 

 

void loop() { 

  //rtc------------------------------------------------------- 

   RtcDateTime now = Rtc.GetDateTime(); 
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    printDate(now); 

    Serial.println(); 

    printTime(now); 

    Serial.println(); 

 

    if (!now.IsValid()) 

    { 

        Serial.println("RTC lost confidence in the DateTime!"); 

    } 

  //rtc end---------------------------------------------------------- 

 

  //dht-------------------------------------------- 

  float suhu = dht22.getTemperature()-5;  // Membaca suhu 

  float kelembaban = dht22.getHumidity();     // Membaca kelembaban 

  if (dht22.getLastError() != dht22.OK) { 

    // Menampilkan error jika terjadi masalah 

    Serial.print("Last error: "); 

    Serial.println(dht22.getLastError()); 

  } 

  // Menampilkan nilai suhu dan kelembaban ke serial monitor 

  Serial.print("kelembaban = "); 

  Serial.print(kelembaban, 1);  // Menampilkan kelembaban dengan 1 digit desimal 

  Serial.print("\t"); 

  Serial.print("suhu = "); 

  Serial.println(suhu, 1); 

  //dht end--------------------------------------------- 
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  //mq4---------------------------------- 

  int rawValue = analogRead(analogPin);  // Baca nilai ADC 

  float voltage = rawValue * Vref / ADCResolution;  // Konversi nilai ADC ke 

tegangan 

  float ppm = calculatePPM(voltage);  // Hitung nilai PPM 

  ppm = max(ppm - 2000, 0.0f); 

 

  // Tampilkan hasil 

  Serial.print("Methane: "); 

  Serial.print(ppm, 2); 

  Serial.println(" ppm"); 

  //mq4---------------------------------- 

 

  //wisner----------------------------------- 

   rawwisnerValue = analogRead(wisnerPin); 

  tekanan = map(rawwisnerValue, 0, 6600, 1, 12); 

  Serial.print("tekanan: "); 

  Serial.print(rawwisnerValue); 

  Serial.print(" / "); 

  Serial.println(tekanan); 

  Serial.println(""); 

  //wisner end---------------------------- 

 

  //sdcard---------------------------- 

     unsigned long currentMillis = millis(); 
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  if (currentMillis - lastSaveTime >= saveInterval) { 

    saveToCSV(now, suhu, kelembaban, tekanan, ppm); 

    lastSaveTime = currentMillis; // Perbarui waktu terakhir penyimpanan 

  } 

  //endsdcard 

 

  //lcd--------------------------- 

  char suhuStr[4]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 3 digit 

+ null terminator) 

  itoa(suhu, suhuStr, 10); // Konversi wisnerValue ke string 

 

  char kelembabanStr[4]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 

3 digit + null terminator) 

  itoa(kelembaban, kelembabanStr, 10); // Konversi wisnerValue ke string 

 

  char wisnerStr[4]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 3 

digit + null terminator) 

  itoa(tekanan, wisnerStr, 10); // Konversi wisnerValue ke string 

 

  char ppmStr[6]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 3 digit 

+ null terminator) 

  itoa(ppm, ppmStr, 10); // Konversi wisnerValue ke string 

 

  lcd.setPosition(0, 0); 

  lcd.print("H: "); 

  lcd.print(kelembabanStr); 

  lcd.print("% "); 
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  lcd.print("M: "); 

  lcd.print(ppmStr); 

  lcd.print(" ppm"); 

 

  lcd.setPosition(0, 1); 

  lcd.print("T: "); 

  lcd.print(suhuStr); 

  lcd.print("C"); 

  lcd.print(" "); 

  lcd.print("P: "); 

  lcd.print(wisnerStr); 

  lcd.print(" Bar "); 

  //lcd end------------------ 

 

  delay(5000); 

  lcd.clear(); 

} 

 

void saveToCSV(const RtcDateTime &dt, float suhu, float kelembaban, int tekanan, 

float ppm) { 

  const char *filePath = "/data.csv"; 

 

  // Buka file dalam mode append 

  File file = SD.open(filePath, FILE_APPEND); 

  if (file) { 

    // Tulis header setiap kali program dimulai 
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    static bool isHeaderWritten = false; 

    if (!isHeaderWritten) { 

      file.println("   Date     ,   Time   , Temperature , Humidity , Pressure ,  Methane  

"); 

      isHeaderWritten = true; 

      Serial.println("Header written to CSV file."); 

    } 

 

    // Format data dengan satuan dan padding untuk rata tengah 

    char buffer[128]; 

    snprintf(buffer, sizeof(buffer), 

             " %02u/%02u/%04u , %02u:%02u:%02u ,   %7.2f C   ,   %7.2f %%  ,  %7.2d 

bar , %7.2f ppm ", 

             dt.Month(), dt.Day(), dt.Year(), 

             dt.Hour(), dt.Minute(), dt.Second(), 

             suhu, kelembaban, tekanan, ppm); 

    file.println(buffer); 

    file.close(); 

 

    Serial.println("Data successfully appended to CSV:"); 

    lcd.setPosition(0, 0); 

    lcd.print("save succes          "); 

    delay(5000); 

    lcd.clear(); 

  } else { 

    Serial.println("Error: Failed to open CSV file for appending."); 

    lcd.setPosition(0, 0); 
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    lcd.print("save failed           "); 

    delay(5000); 

    lcd.clear(); 

 

  } 

} 

 

void printDateTime(const RtcDateTime &dt) 

{ 

    char dateString[11]; // Format: MM/DD/YYYY 

    char timeString[9];  // Format: HH:MM:SS 

 

    snprintf_P(dateString, 

               countof(dateString), 

               PSTR("%02u/%02u/%04u"), 

               dt.Month(), 

               dt.Day(), 

               dt.Year()); 

 

    snprintf_P(timeString, 

               countof(timeString), 

               PSTR("%02u:%02u:%02u"), 

               dt.Hour(), 

               dt.Minute(), 

               dt.Second()); 
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    Serial.print("Date: "); 

    Serial.print(dateString); 

    Serial.print("  Time: "); 

    Serial.print(timeString); 

} 

 

void printDate(const RtcDateTime &dt) 

{ 

    char dateString[11]; // Format: MM/DD/YYYY 

 

    snprintf_P(dateString, 

               countof(dateString), 

               PSTR("%02u/%02u/%04u"), 

               dt.Month(), 

               dt.Day(), 

               dt.Year()); 

 

    Serial.print("Date: "); 

    Serial.print(dateString); 

} 

 

void printTime(const RtcDateTime &dt) 

{ 

    char timeString[9]; // Format: HH:MM:SS 

 

    snprintf_P(timeString, 
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               countof(timeString), 

               PSTR("%02u:%02u:%02u"), 

               dt.Hour(), 

               dt.Minute(), 

               dt.Second()); 

 

    Serial.print("Time: "); 

    Serial.print(timeString); 

} 


