
 
 

68 
 

LAMPIRAN 

 

Lampiran 1. Dokumentasi Percobaan Biodigester Limbah Serbuk Kayu 

 

    

 

  



69 
 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

 
 

Lampiran 2. Dokumentasi Percobaan Biodigester Limbah Kulit Nanas 

 

   

  

 



71 
 

 
 

Lampiran 3. Dokumentasi Percobaan Biodigester Limbah Kotoran Bebek 

 

   

 

  

 

 

 



72 
 

 
 

Lampiran 4. Surat Kesediaan Pembimbing Tugas Akhir I 

 

 



73 
 

 
 

Lampiran 5. Surat Kesediaan Pembimbing Tugas Akhir II 

 



74 
 

 
 

Lampiran 6. Form Bimbingan Tugas Akhir I 

 

 



75 
 

 
 

Lampiran 7. Form Bimbingan Tugas Akhir II 

 



76 
 

 
 

Lampiran 8. Kode Program 

 

//RTC-------------------------------- 

#include <RtcDS1302.h> 

 

ThreeWire myWire(4, 16, 2); // IO, SCLK, CE 

RtcDS1302<ThreeWire> Rtc(myWire); 

//rtc end------------------------------------------------ 

 

//dht------------------------------------------ 

#include <DHT22.h>  // Pastikan library DHT22 sudah terpasang 

#define pinDATA 26 

DHT22 dht22(pinDATA);  // Membuat objek untuk sensor DHT22 

//dht end-------------------------------------------------- 

 

//mq4----------------------- 

 

const int analogPin = 34; 

const float Vref = 330;  // Tegangan referensi ESP32 (3.3V) 

const int ADCResolution = 4095;  // Resolusi ADC ESP32 (12-bit) 

 

float calculatePPM(float voltage) { 

  return (voltage) * 1000;  // Eksperimen untuk hasil lebih akurat 

} 

//mq4 end-------------------------- 

 



77 
 

 
 

//wisner------------------------------------- 

const int wisnerPin = 33; // Pin analog tempat sensor terhubung 

int rawwisnerValue = 0;      // Variabel untuk menyimpan nilai analog 

int tekanan = 0;      // Variabel untuk menyimpan nilai yang dimapping 

//wisner end---------------------------------------- 

 

//lcd---------------------------------------- 

#include <Bonezegei_LCD1602_I2C.h> 

Bonezegei_LCD1602_I2C lcd(0x27); 

//lcd end------------------------------- 

 

//sd card----------------- 

#include "SD.h" 

#include "SPI.h" 

#include <Wire.h> 

 

#define SCK  18 

#define MISO  19 

#define MOSI  23 

#define CS  5 

 

SPIClass spi = SPIClass(VSPI); 

 

//sd card end---------------------------- 

 

unsigned long lastSaveTime = 0; // Waktu terakhir data disimpan 



78 
 

 
 

const unsigned long saveInterval = 600000; // Interval penyimpanan data (30 menit) 

 

void setup() { 

  Serial.begin(115200); 

  //rtc----------------------------------------- 

   Rtc.Begin(); 

 

    RtcDateTime compiled = RtcDateTime(_DATE, __TIME_); 

    printDateTime(compiled); 

    Serial.println(); 

 

    if (!Rtc.IsDateTimeValid()) 

    { 

        Serial.println("RTC lost confidence in the DateTime!"); 

        Rtc.SetDateTime(compiled); 

    } 

 

    if (Rtc.GetIsWriteProtected()) 

    { 

        Serial.println("RTC was write protected, enabling writing now"); 

        Rtc.SetIsWriteProtected(false); 

    } 

 

    if (!Rtc.GetIsRunning()) 

    { 

        Serial.println("RTC was not actively running, starting now"); 



79 
 

 
 

        Rtc.SetIsRunning(true); 

    } 

 

    RtcDateTime now = Rtc.GetDateTime(); 

    if (now < compiled) 

    { 

        Serial.println("RTC is older than compile time!  (Updating DateTime)"); 

        Rtc.SetDateTime(compiled); 

    } 

    else if (now > compiled) 

    { 

        Serial.println("RTC is newer than compile time. (this is expected)"); 

    } 

    else if (now == compiled) 

    { 

        Serial.println("RTC is the same as compile time! (not expected but all is fine)"); 

    } 

 

//rtc end--------------------------------------------- 

 

//lcd-------------------------------- 

  lcd.begin(); 

  lcd.setPosition(0, 0);      //param1 = X   param2 = Y 

  lcd.print("MONITORING"); 

  lcd.setPosition(0, 1); 

  lcd.print("BIODIGESTER            "); 



80 
 

 
 

  delay(2000); 

  lcd.clear(); 

  lcd.setPosition(0, 0);       

  lcd.print("IKHSAN             "); 

  lcd.setPosition(0, 1); 

  lcd.print("22010004          "); 

  delay(1000); 

  lcd.clear(); 

  lcd.setPosition(0, 0);       

  lcd.print("GILANG             "); 

  lcd.setPosition(0, 1); 

  lcd.print("22010005           "); 

  delay(1000); 

  lcd.clear(); 

  lcd.setPosition(0, 0);      

  lcd.print("SONA             "); 

  lcd.setPosition(0, 1); 

  lcd.print("24012001               "); 

  delay(1000); 

  lcd.clear(); 

  

  //lcd end-------------------------- 

 

  // SD Card Initialization 

 spi.begin(SCK, MISO, MOSI, CS); 

 



81 
 

 
 

  if (!SD.begin(CS,spi,80000000)) { 

    Serial.println("Card Mount Failed"); 

    lcd.setPosition(0, 0); 

    lcd.print("Card Mount"); 

    lcd.setPosition(0, 1); 

    lcd.print("Failed            "); 

    delay(2000); 

    lcd.clear(); 

  } 

  uint8_t cardType = SD.cardType(); 

 

  if(cardType == CARD_NONE){ 

    Serial.println("No SD card attached"); 

    lcd.setPosition(0, 0); 

    lcd.print("No SD card"); 

    lcd.setPosition(0, 1); 

    lcd.print("Attached         "); 

    delay(2000); 

    lcd.clear(); 

  } 

} 

 

void loop() { 

  //rtc------------------------------------------------------- 

   RtcDateTime now = Rtc.GetDateTime(); 

 



82 
 

 
 

    printDate(now); 

    Serial.println(); 

    printTime(now); 

    Serial.println(); 

 

    if (!now.IsValid()) 

    { 

        Serial.println("RTC lost confidence in the DateTime!"); 

    } 

  //rtc end---------------------------------------------------------- 

 

  //dht-------------------------------------------- 

  float suhu = dht22.getTemperature()-5;  // Membaca suhu 

  float kelembaban = dht22.getHumidity();     // Membaca kelembaban 

  if (dht22.getLastError() != dht22.OK) { 

    // Menampilkan error jika terjadi masalah 

    Serial.print("Last error: "); 

    Serial.println(dht22.getLastError()); 

  } 

  // Menampilkan nilai suhu dan kelembaban ke serial monitor 

  Serial.print("kelembaban = "); 

  Serial.print(kelembaban, 1);  // Menampilkan kelembaban dengan 1 digit desimal 

  Serial.print("\t"); 

  Serial.print("suhu = "); 

  Serial.println(suhu, 1); 

  //dht end--------------------------------------------- 



83 
 

 
 

 

  //mq4---------------------------------- 

  int rawValue = analogRead(analogPin);  // Baca nilai ADC 

  float voltage = rawValue * Vref / ADCResolution;  // Konversi nilai ADC ke 

tegangan 

  float ppm = calculatePPM(voltage);  // Hitung nilai PPM 

  ppm = max(ppm - 2000, 0.0f); 

 

  // Tampilkan hasil 

  Serial.print("Methane: "); 

  Serial.print(ppm, 2); 

  Serial.println(" ppm"); 

  //mq4---------------------------------- 

 

  //wisner----------------------------------- 

   rawwisnerValue = analogRead(wisnerPin); 

  tekanan = map(rawwisnerValue, 0, 6600, 1, 12); 

  Serial.print("tekanan: "); 

  Serial.print(rawwisnerValue); 

  Serial.print(" / "); 

  Serial.println(tekanan); 

  Serial.println(""); 

  //wisner end---------------------------- 

 

  //sdcard---------------------------- 

     unsigned long currentMillis = millis(); 



84 
 

 
 

  if (currentMillis - lastSaveTime >= saveInterval) { 

    saveToCSV(now, suhu, kelembaban, tekanan, ppm); 

    lastSaveTime = currentMillis; // Perbarui waktu terakhir penyimpanan 

  } 

  //endsdcard 

 

  //lcd--------------------------- 

  char suhuStr[4]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 3 digit 

+ null terminator) 

  itoa(suhu, suhuStr, 10); // Konversi wisnerValue ke string 

 

  char kelembabanStr[4]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 

3 digit + null terminator) 

  itoa(kelembaban, kelembabanStr, 10); // Konversi wisnerValue ke string 

 

  char wisnerStr[4]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 3 

digit + null terminator) 

  itoa(tekanan, wisnerStr, 10); // Konversi wisnerValue ke string 

 

  char ppmStr[6]; // Buffer untuk menyimpan nilai (cukup untuk angka hingga 3 digit 

+ null terminator) 

  itoa(ppm, ppmStr, 10); // Konversi wisnerValue ke string 

 

  lcd.setPosition(0, 0); 

  lcd.print("H: "); 

  lcd.print(kelembabanStr); 

  lcd.print("% "); 



85 
 

 
 

  lcd.print("M: "); 

  lcd.print(ppmStr); 

  lcd.print(" ppm"); 

 

  lcd.setPosition(0, 1); 

  lcd.print("T: "); 

  lcd.print(suhuStr); 

  lcd.print("C"); 

  lcd.print(" "); 

  lcd.print("P: "); 

  lcd.print(wisnerStr); 

  lcd.print(" Bar "); 

  //lcd end------------------ 

 

  delay(5000); 

  lcd.clear(); 

} 

 

void saveToCSV(const RtcDateTime &dt, float suhu, float kelembaban, int tekanan, 

float ppm) { 

  const char *filePath = "/data.csv"; 

 

  // Buka file dalam mode append 

  File file = SD.open(filePath, FILE_APPEND); 

  if (file) { 

    // Tulis header setiap kali program dimulai 



86 
 

 
 

    static bool isHeaderWritten = false; 

    if (!isHeaderWritten) { 

      file.println("   Date     ,   Time   , Temperature , Humidity , Pressure ,  Methane  

"); 

      isHeaderWritten = true; 

      Serial.println("Header written to CSV file."); 

    } 

 

    // Format data dengan satuan dan padding untuk rata tengah 

    char buffer[128]; 

    snprintf(buffer, sizeof(buffer), 

             " %02u/%02u/%04u , %02u:%02u:%02u ,   %7.2f C   ,   %7.2f %%  ,  %7.2d 

bar , %7.2f ppm ", 

             dt.Month(), dt.Day(), dt.Year(), 

             dt.Hour(), dt.Minute(), dt.Second(), 

             suhu, kelembaban, tekanan, ppm); 

    file.println(buffer); 

    file.close(); 

 

    Serial.println("Data successfully appended to CSV:"); 

    lcd.setPosition(0, 0); 

    lcd.print("save succes          "); 

    delay(5000); 

    lcd.clear(); 

  } else { 

    Serial.println("Error: Failed to open CSV file for appending."); 

    lcd.setPosition(0, 0); 



87 
 

 
 

    lcd.print("save failed           "); 

    delay(5000); 

    lcd.clear(); 

 

  } 

} 

 

void printDateTime(const RtcDateTime &dt) 

{ 

    char dateString[11]; // Format: MM/DD/YYYY 

    char timeString[9];  // Format: HH:MM:SS 

 

    snprintf_P(dateString, 

               countof(dateString), 

               PSTR("%02u/%02u/%04u"), 

               dt.Month(), 

               dt.Day(), 

               dt.Year()); 

 

    snprintf_P(timeString, 

               countof(timeString), 

               PSTR("%02u:%02u:%02u"), 

               dt.Hour(), 

               dt.Minute(), 

               dt.Second()); 

 



88 
 

 
 

    Serial.print("Date: "); 

    Serial.print(dateString); 

    Serial.print("  Time: "); 

    Serial.print(timeString); 

} 

 

void printDate(const RtcDateTime &dt) 

{ 

    char dateString[11]; // Format: MM/DD/YYYY 

 

    snprintf_P(dateString, 

               countof(dateString), 

               PSTR("%02u/%02u/%04u"), 

               dt.Month(), 

               dt.Day(), 

               dt.Year()); 

 

    Serial.print("Date: "); 

    Serial.print(dateString); 

} 

 

void printTime(const RtcDateTime &dt) 

{ 

    char timeString[9]; // Format: HH:MM:SS 

 

    snprintf_P(timeString, 



89 
 

 
 

               countof(timeString), 

               PSTR("%02u:%02u:%02u"), 

               dt.Hour(), 

               dt.Minute(), 

               dt.Second()); 

 

    Serial.print("Time: "); 

    Serial.print(timeString); 

} 


